Username/Email: Password:
 
Journal: Other journals  2013 No.3  Share to Sinaweibo  Share to QQweibo  Share to Facebook  Share to Twitter    clicks:829   
Title:
Fault-zone controls on the spatial distribution of slow-moving landslides
Author: Joel S. Scheingross, Brent M. Minchew, Benjamin H. Mackey, Mark Simons, Michael P. Lamb and Scott Hensley
Adress: Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
Abstract:

Slow-moving landslides (earthflows) can dominate hillslope sediment flux and landscape erosion in hilly terrain with mechanically weak, fine-grained rock. Controls on the occurrence of slow-moving landslides are poorly constrained and need to be understood for landscape evolution models, sediment budgets, and infrastructure and hazards planning. Here, we use airborne interferometric synthetic aperture radar (InSAR) and aerial photographs to document 150 previously unidentified active earthflows along the central, creeping portion of the San Andreas fault, California. The earthflows move seasonally in response to winter rainfall, occur on hillslopes at ∼20%–40% gradients (less than typically associated with rapid, catastrophic landslides), and have similar morphological characteristics to earthflows in different climatic and tectonic settings. Although our data extend up to 10 km from the fault trace, ∼75% of detected landslides occur within 2 km of the active fault. Topographic, precipitation, and rock type metrics alone are not enough to explain the observed spatial distribution of earthflows. Instead, we hypothesize that earthflows cluster near the creeping San Andreas fault because of a fault-induced zone of reduced bulk-rock strength that increases hillslope susceptibility to failure. In addition, similar lithology, topography, and climate exist north of the creeping section of the fault, yet earthflows there are rare. This may be due to large-magnitude earthquakes episodically triggering coseismic rapid landslides, which preferentially remove weak rock from the fault damage zone. Our analysis suggests that the necessary conditions for earthflow formation in central California include some combination of reduced rock strength, fine-grained sedimentary rock, threshold precipitation and relief, and possibly the absence of large-magnitude earthquakes. These conditions likely hold for earthflow development in other areas, and our work suggests that local variations in rock strength and seismicity, such as those associated with fault zones, need to be taken into account in order to accurately predict earthflow occurrence.


Comment:
Write a comment about this article

To avoid abuse of the message board, all messages will be checked before publishing.