Username/Email: Password:
 
Journal: Bulletin of Seismological Society of America  2019 No.4  Share to Sinaweibo  Share to QQweibo  Share to Facebook  Share to Twitter    clicks:131   
Title:
Long‐Period Ground Motions from Past and Virtual Megathrust Earthquakes along the Nankai Trough, Japan
Author: Loïc Viens ; Marine A. Denolle
Adress: Loïc Viens ; Marine A. Denolle
Abstract: Long‐period ground motions from large (⁠Mw≥7.0Mw≥7.0) subduction‐zone earthquakes are a real threat for large‐scale human‐made structures. The Nankai subduction zone, Japan, is expected to host a major megathrust earthquake in the near future and has therefore been instrumented with offshore and onshore permanent seismic networks. We use the ambient seismic field continuously recorded at these stations to simulate the long‐period (4–10 s) ground motions from past and future potential offshore earthquakes. First, we compute impulse response functions (IRFs) between an ocean‐bottom seismometer of the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) network, which is located offshore on the accretionary wedge, and 60 onshore Hi‐net stations using seismic interferometry by deconvolution. As this technique only preserves the relative amplitude information of the IRFs, we use a moderate MwMw 5.5 event to calibrate the amplitudes to absolute levels. After calibration, the IRFs are used together with a uniform stress‐drop source model to simulate the long‐period ground motions of the 2004 MwMw 7.2 intraplate earthquake. For both events, the residuals of the 5% damped spectral acceleration (SA) computed from the horizontal and vertical components of the observed and simulated waveforms exhibit almost no bias and acceptable uncertainties. We also compare the observed SA values of the MwMw 7.2 event to those from the subduction‐zone BC Hydro ground‐motion model (GMM) and find that our simulations perform better than the model. Finally, we simulate the long‐period ground motions of a hypothetical MwMw 8.0 subduction earthquake that could occur along the Nankai trough. For this event, our simulations generally exhibit stronger long‐period ground motions than those predicted by the BC Hydro GMM. This study suggests that the ambient seismic field recorded by the ever‐increasing number of ocean‐bottom seismometers can be used to simulate the long‐period ground motions from large megathrust earthquakes.

Comment:
Write a comment about this article

To avoid abuse of the message board, all messages will be checked before publishing.