Username/Email: Password:
 
Journal: Journal of Geophysical Research  2019 No.8  Share to Sinaweibo  Share to QQweibo  Share to Facebook  Share to Twitter    clicks:275   
Title:
Complex Lithospheric Deformation in Eastern and Northeastern Tibet from Shear‐wave Splitting Observations and its Geodynamic Implications
Author: Yifan Gao
Adress:
Abstract: The eastern and northeastern Tibetan plateau is a key region to study the growth and expansion of the plateau and associated extrusion tectonics. We studied the seismic anisotropic structure in this region by shear‐wave splitting analysis of teleseismic records from a dense linear seismic array, to constrain the lithospheric deformation and processes. We detected small‐scale variations in anisotropy, including changes of splitting parameters around major faults and different anisotropy patterns among individual tectonic blocks and units but with consistent interior features. Our results combined with previous observations suggest that, in addition to the dominant effects of lateral extrusion induced by the India‐Eurasia collision, major faults and tectonic heterogeneity may have also exerted significant impacts on the deformation and thus anisotropic structure of the lithosphere. In particular, we constructed two‐layer anisotropy models for both the Longmenshan sub‐block in the easternmost Songpan‐Ganzi terrane and the Western Qinling orogen, indicating crust‐mantle decoupling in these areas. The lower anisotropic layer of both areas shows a general NW‐SE fast polarization direction (FPD). We attribute this feature to the large‐scale mantle deformation, due to the lateral extrusion of Tibet associated with the India‐Eurasia collision. The upper‐layer anisotropy in both areas features an optimal NEE‐SWW FPD. While in the Longmenshan sub‐block it may stem from crustal deformation under the combined effects of mid‐lower crustal flow, faulting and tectonic heterogeneity, that in the Western Qinling Orogen is probably resulted from shearing caused by upper‐crustal displacement along a mid‐crustal detachment.
Comment:
Write a comment about this article

To avoid abuse of the message board, all messages will be checked before publishing.