Username/Email: Password:
 
Journal: Acta Geologica Sinica  2014 No.2  Share to Sinaweibo  Share to QQweibo  Share to Facebook  Share to Twitter    clicks:942   
Title:
The Deep Geophysical Structure of the Middle Section of the Longmen Mountains Tectonic Belt and its Relation to the Wenchuan Earthquake
Author: YU Nian WANG Xuben HU Xiangyun CAI Xuelin KAN Aike ZHAO Ning
Adress: Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, Hubei
Abstract:

 Investigation of the deep geophysical structure of the Longmen Mountains tectonic belt and its relation to the Wenchuan Earthquake is important for the study of earthquakes. By using magnetotelluric sounding profiles of the Luqu–Zhongjiang and Anxian–Suining; seismic sounding profiles of the Sichuan Maowen–Chongqing Gongtan, the Qinghai Huashi Gorge–Sichuan Jianyang, and the Batang–Zizhong; and magnetogravimetric data of the Longmen Mountains region, the deep geophysical?structure of the Songpan–Ganzi block, the western Sichuan foreland basin, and the Longmen Mountains tectonic belt and their relation was discussed. The eastward extrusion of the Qinghai–Tibet Plateau thrusts the Songpan–Ganzi block upon the Yangtze block, which obstructs the eastward movement of the Qinghai–Tibet Plateau. The Maoxian–Wenchuan, Beichuan–Yingxiu, and Anxian–Guanxian faults of the Longmen Mountains fault belt dip to northwest with different dip angles and gradually converge in the deeper parts. Geophysical?structure suggests that an intracrustal low-velocity, low-resistivity, and high-conductivity layer is common between the middle and upper crust west of the Longmen Mountains tectonic belt but not in the upper Yangtze block. The Sichuan Basin has a thick low-resistance sedimentary layer on a stable high-resistance basement; moreover, there are secondary paleohighs and depression structures at the lower part of the western Sichuan foreland basin with characteristic of high magnetic anomalies, whereas the Songpan–Ganzi block has a high resisitivity cover of upper crust and continues to a low-resistance layer. Considering the Longmen Mountains tectonic belt as the boundary, there are Bouguer gravity anomalies of “one belt between two zones.” Thus, we infer that there is a corresponding relation between the inferred crystalline basement of the Songpan block and the underlying basin basement of the Longmen Mountains fault belt. Furthermore, there may be an extensive ancient Yangtze block, which is west of the Ruoergai block. In addition, the crust–mantle ductile shear zone under the Longmen Mountains tectonic belt is the main fault, whereas the Beichuan–Yingxiu and Anxian–Guanxian faults at the surface are earthquake faults. The Wenchuan Ms 8.0 earthquake might be attributed to the collision of the Yangtze block and the Qinghai–Tibet Plateau. The eastward obduction of the eastern edge of the Qinghai–Tibet Plateau and eastward subduction of its deeper part under the influence of the collision of the Indian, Pacific, and Philippine Plates with the Eurasia Plate might have caused the Longmen Mountains tectonic belt to cut the Moho and extend to the middle and upper crust; thus, creating high stress concentration and rapid energy release zone.

Comment:
Write a comment about this article

To avoid abuse of the message board, all messages will be checked before publishing.